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The diffusion of solutes in gels is comprehensively reviewed. Because it has been a source of confusion, 
precise definitions of the gel diffusion coefficient are presented and discussed. Theories as to the effect 
of the gel substance on the course of diffusion are critically evaluated. These include the obstruction 
effect, hydrodynamic drag and other frictional couplings, alteration of solvent properties and (for 
homogeneous gels) the free volume theory. A large proportion of the data on diffusion in gels to be 
found in the literature is displayed, with the exception of those systems where binding of the solute is a 
major factor. The success of the theories in accounting for these results is examined. It is concluded that 
for heterogeneous gels the obstruction effect is prevalent, for organic solvent-polymer systems the free 
volume theory has had some success while diffusion of both macromolecules and micromolecular 
solutes in homogeneous gels is not well understood and deserves more experimental effort. 
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INTRODUCTION 

While diffusion in polymer gels and solutions is of direct 
interest for its own sake in a wide variety of fields, gels also 
provide a system in which diffusion may be easily studied 
without the hazard of convection, and from which it is 
often hoped that the free solution diffusivities can be 
inferred ~ -6. Other workers have studied diffusion in gels 
in order to evaluate gel structure 7- ~ 

Gels 

Gels cover a spectrum from one phase or homogeneous 
dynamic solutions (where entropy of the mix is the chief 
factor responsible for retention of the solvent, and 'pores' 
are neither constant in size nor location) to two phase or 
heterogeneous rigid porous structures (where capillary 
forces are responsible for solvent retention). For this 
reason results and theories for diffusion in polymer 
solutions and porous media will be included in this review. 

From a knowledge of the nature of the crosslinks or 
junction zones it is possible to get some idea of the fraction 
of polymer which is associated with these semi-permanent 
structures, and hence roughly where in the spectrum a 
particular gel lies. Thus for aqueous gels, polyacrylamide 
gels are expected to be fairly homogeneous12'~3; i- 
carrageenan, x-carrageenan, furcellaran and agarose form 
a series of gels of increasingly heterogeneous nature~4; 
calcium alginate gels become progressively more 
heterogeneous as more Ca 2+ ions are added during 
preparation, thus increasing the number of 
polysaccharide chains participating in the junction 
zones 15. However, much more uncertainty surrounds the 
actual geometry of the semi-permanent structures. A 
further complication arises for gels which might be 
expected to be homogeneous, but which at sufficiently 
high water content and degree of crosslinking suffer phase 
separation on gelation from the monomer or polymer 
solution. This results in a mixed structure of 
homogeneous fully swollen regions of gel and pockets of 
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solvent, and is often accompanied by syneresis I o. Direct 
observation by electron microscopy has been attempted 
for silica and gelatin gels 16, gelatin gels 17, alginate gels ~ a, 
poly(N-alkylacrylate) gels 19, and various protein gels 2°, 
but it is uncertain how much of the observed structure is 
an artefact of sample preparation. 

In formulating theories of diffusion in gels, it is usually 
necessary to have an idealized picture of the structure. 
One widely used picture due to Ogston 21 treats gels as 
random networks of fibres; their radius is the only 
important structural parameter. It is considered that 
randomness includes the possibility of lack of rigidity so 
that no distinction need be drawn between gels and 
solutions 22. This model has also been extended to include 
disc-shaped and spherical particles of gel substance as 
well as fibres 23. 

Factors affecting diffusion in gels 
The fractional decrease DiD o in the rate of diffusion of 

a small solute on the addition of a polymer to the solvent 
is often at least an order of magnitude less than the 
fractional increase ~//~/0 in macroscopic viscosity 24. This 
result would at first sight appear to be at variance with the 
classical hydrodynamic theory of diffusion, which gives 
the diffusion coefficient D of a trace impurity as2S: 

D = k T47v/r 

where k is the Boltzmann constant, T the absolute 
temperature, r/the medium viscosity and r the radius of 
the diffusing molecule. However, for a diffusing solute of 
molecular size considerably less than that of the polymer, 
a more appropriate application of this theory would treat 
the polymer-solvent system as a continuum in which 
large objects are suspended. As yet no complete 
hydrodynamic treatment of the motion of small spheres 
through such a system has been developed 26. In addition 
to the hydrodynamic interactions (numbers 1 and 2 



below) there may be more specific interactions between 
solute, solvent and polymer; alternatively an entirely 
different model for diffusion, the free volume theory, could 
be applied. Thus the polymer may influence solute 
diffusion in any (or all) of the following four ways: 

(1) The obstruction effect. The presence of impenetrable, 
slow moving polymer molecules leads to an increase in the 
path length for diffusion. 

(2) Increased hydrodynamic drag. The proximity of the 
slow moving polyme~solvent interface leads to an 
increased hydrodynamic drag on the moving solute 
molecules. 

(3) Alteration of solvent properties. The presence of the 
polymer may alter properties of the solvent such as 
intermolecular spacing. 

(4) Polymer involvement. Shearing of polymer solvent 
and polymer-solute bonds and bending of polymer chains 
may occur with significant frequency during solute 
diffusion. In addition, the polymer content of the medium 
in which diffusion occurs may have significant effect on its 
free volume. 

Before embarking on a detailed discussion of these 
ideas and how successfully they explain results, it is 
necessary to clarify some issues which relate to definitions 
and scope. 

Binding of the solute 
Firstly, one important way in which the gel substance 

may affect diffusion is by binding the solute. The 
mobilities of bound and free solutes may then be 
characterized by different diffusion coefficients, Dboun d and 
Dfr~e, so that Fick's first law becomes: 

J = _ D b o u n d ( ~ C b o u n d / ~ X  ) - -  Dfre~(OCfr~JCqx) 

If the relationship between Cboun d and Cfro~, and the values 
of Dbou. d and Drre~ are known, it may then be possible to 
predict the measured diffusion coefficient D defined by 

J = - D0(Cbou,d + Cf, j/Ox 

The simplest case of binding occurs if Dbound=0 and 
Cbound=Ct (Cbou.d+Cfre~), where ct is independent of 
concentration and position. It follows that D = (1 - ct) Dfrc~ , 
which is the result of Wang z7 for diffusion of labelled 
water in a system in which the fraction ~ of water is bound 
and immobile, but exchanges very rapidly with the free 
water. This result applies to both steady state and 
transient diffusion, provided D is defined in terms of total 
concentration per unit gel volume. 

More complicated cases have been discussed by Paul 
and Kemp 2a and Paul and Koros 29. A widely occurring 
situation is that of the diffusion of counterions in 
polyelectrolyte gels or ion-exchangers 4'3°-3a where the 
binding of the solute at a limited number of sites results in 
D being concentration dependent even when D O is not. 

As the binding will depend on the specific nature of the 
system, it seems more fruitful to concentrate attention 
below on more general features. 

Swelling and frames of reference 
A problem characteristic of diffusion in gels is that the 

gel volume may not remain constant throughout the 
experiment. This may occur because the gel has not 
reached an equilibrium degree of swelling before exposure 
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to a solution from which (or into which) solute diffusion 
takes place--the cause of such swelling may be removed 
either by first equilibrating the gel in the solvent for a 
prolonged period of time 13'34 or by setting up the solute 
concentration gradient entirely within the gel, thus 
removing the need for an external solution 31. However, 
the progress of diffusion may itself cause swelling, and this 
case will now be considered in some detail. 

Clearly all systems of interest here have at least three 
components polymer, solvent and solute. In such 
systems a component, although itself distributed 
uniformly, may flow due to the existence of concentration 
gradients of the other components. Such flow may be 
caused either by frictional coupling (the diffusional flows 
of the other components exerting a net driving force) or by 
thermodynamic coupling (the chemical potential of the 
component, which is the driving force for diffusion, will 
generally depend on the concentrations of the other 
components) 35. Frictional coupling could cause 
heterogeneous gels to shrink or swell during diffusion, 
while homogeneous gels are subject to both sorts of 
coupling. In addition, it has been suggested that in the 
course of diffusion in solutions pressure gradients arise 
which are relieved by a 'bulk flow' of the solution, and that 
such flow can be detected by the motion of marker 
particles 36. The gel matrix may function in this capacity. 
It has been variously stated that the bulk velocity is the 
local mass-fixed velocity 37'38, the local volume-fixed 
velocity 39 or indeed is distinct from any of the customarily 
used reference velocities for diffusion 36. It has been noted, 
however, that the local mass-fixed, volume-fixed, mole- 
fixed and solvent-fixed velocities differ only when there is 
relative motion of solution components and that, in this 
case, the definition of 'bulk' or hydrodynamic velocity is 
only a matter of convention (usually the volume fixed 
velocity is chosen), even though there is a natural 
relationship) the equation of motion) between the 
pressure gradient and the mass-fixed velocity 4°. In 
practice, any effect of bulk flow on marker motion has 
been masked by frictional or thermodynamic coupling in 
the few systems which have been studied 38'41"4z 

If the coefficient of diffusion in the gel (D) is to be 
compared to the coefficient of diffusion in the absence of 
the gel matrix (Do) it is best, therefore, to use a frame of 
reference independent of possible motions of the gel 
matrix. If the solute concentration is very small, all the 
usual frames of reference become identical and swelling of 
the gel due to the progress of diffusion will be negligible; 
otherwise the various defining frames of reference yield 
different values of D which, however, may readily be 
interconverted 43. The cell reference frame is the most 
commonly used, and is equivalent to the local volume- 
fixed frame except when there is a volume change on 
mixing, in which case the discrepancy is negligible 
provided the concentration differences are very 
small ~°,~. 

Solvent tracer diffusion and mutual diffusion 
An interesting special case occurs when the solute is a 

labelled form of solvent, D o then being the self diffusion 
coefficient of the solvent (which will be denoted O~) while 
D is termed the intradiffusion coefficient of the solvent in 
the gel (and will be denoted by D'). In conventional 
diffusion experiments the labelling of the solvent is 
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generally achieved with an isotope while in n.m.r. 
diffusion experiments solvent molecules are labelled by 
means of nuclear spin. In such experiments it is possible 
that transport of the label may occur by a mechanism 
involving exchange as well as by the diffusional transport 
of the labelled molecule. An important case which has 
received attention is that of HTO. However, H2 O18, 
HDO and HTO have been shown to be transported in 
ordinary water at almost the same rate 45, and in a 
cellulose acetate membrane of only 10% moisture content 
HTO and H2 O18 are transported, within experimental 
error at the same rate 46. 

Apart from the above considerations, the diffusion of 
labelled solvent is no different in character from that of 
other small solvents. Nevertheless, some authors have 
attempted to infer the mutual diffusion coefficient 
(denoted here DM) of the gel-solvent system from D*. 
According to all known theories of diffusion, 

limDM= limD* 
q ~ l  ¢--*1 

where ~p is the polymer volume fraction. A corresponding 
equality holds between limDM and the limiting polymer 

4,-*0 
tracer diffusion coefficient, and the equalities hold for any 
two component system 47. With less justification, relations 
between D M and the intradiffusion coefficients of the 
components over the full composition have been 
proposed36'48; adaptations of these for polymer solutions 
are48,49 

and36,5  o 

D M = D*(81n as~din(1 - ~p)) 

D M = D'~o(c31n as/din (I - tp)) 

where a s is the activity of the solvent. In the system 
benzene-rubber the first of these formulae has been found 
adequate for ~0 > 0.6, but progressively underestimates D M 
as q3 decreases, predicting that at ~o =O.05,DM/D* =0.013 
whereas the measured value is DM/D* =0.056; the second 
formula thus underestimates D M to a much greater 
extent 42. It can be taken, therefore, that apart from the 
case of ~o close to unity 42's° there is no generally reliable 
relationship between D* and DM. This is not surprising for 
gels, i.e. crosslinked polymer systems, since the gel matrix 
is unperturbed during solvent tracer diffusion whereas 
swelling is the hallmark of mutual diffusion, and the 
attendant strains may well give rise to anomalous 
effects 51.52. Thus while there has been recent progress in 
the understanding of general features of mutual diffusion 
in polymer solutions 5°, the kinetics of swelling of a gel are 
inevitably a specific property, and sometimes are even 
regarded as a phenomenon separate from diffusion ~3. 

Units of solute concentration and flux 
Solute concentration may be defined as either the 

amount of solute per unit volume of gel (here denoted Co), 
or the amount of solute per unit void volume (here 
denoted Cv). For porous media Cv is the more usual and 
appropriate measure, but in any case Co=(1-q~)Cv. In 
general neither Co nor Cv will be equal to the 
concentration of a solution in equilibrium with the gel 
(denoted here CE) , but are related to CE by the partition 

coefficient K defined by Cc=KC E. For non-adsorbed 
solutes, the usual approach to theoretical predictions of K 
is the geometric exclusion effect-- the fractional void 
volume available for the centres of large solute molecules 
(here denoted 1 - ~ )  being less than the available for the 
centres of the smaller solvent molecules (1 - ~0), which can 
more closely approach the void walls. It follows that 
Co=(1-~)CE,  so that K = I - ~ .  Such calculations 
require a specific model of gel structure 21,53.54 and for a 
given K can yield parameters related to the fineness of 
dispersion of the gel substance 55. However, for known 
structure and pore size they have sometimes been found to 
be at variance with values of K determined 
experimentally 54. Furthermore, low values of K have 
been found for inorganic salts in cellulose gels and 
polyacrylamide gel pointing to the existence of factors 
other than steric exclusion 56. 

Frequently in diffusion experiments on gels, the 
experimentally measured concentrations are those of 
external solutions, and sometimes (especially for 
membranes) an effective diffusion coefficient (denoted De~) 

D ACE is defined by J = - ~ -  where J is the flux per unit area 

of gel of thickness AX, which separates solutions differing 
in concentration by amount ACE. It follows that D¢~= KD 

AC~ 
where D is defined by J = - DA~- (see Figure 1). While De, 

is of practical use, it is necessary to devise experiments 
from which K and D can be found independently for a 
more complete understanding 1'34'54, which unfortunately 
has not been done in some otherwise careful studies 9'53. 
Furthermore, it should be noted that it has sometimes 
been tacitly assumed that K = 1, leading to errors in the 
calculation of the diffusion coefficient 7'57'5s or apparent 
failure of standard solutions of the diffusion equation 59. 
These will become more significant with increase in 
polymer concentration, since (for unbound solutes) 
K ~< 1 - q~. Further complications arise for non-uniformly 
crosslinked gels, where ~0 (and hence K) is an unknown 
function of position s6. 

Reduced cross-sectional area for diffusion 
If the solute is excluded from a volume fraction • of the 

system, then there is also a certain fraction of the area of 
any lamina across which transport cannot take place. 
Dumanski 6° gave ~2/3 as the value of this fraction of area 

t 
8 

C2 o 
4~  

Ct 
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and claimed this to be the chief mechanism of reduction of 
the rate of diffusion by the colloid. However, the correct 
result is that the average reduction in cross-sectional area 
is equal to the volume fraction of obstacles (~), this being 
the principle of Delesse 61. With this correction, the idea of 
reduced cross-sectional area for diffusion s7 and for 
electrophoretic transport 23 has been used more recently. 
Against this idea it has been pointed out that while the 
diffusive flux based on unit total area is (1 - ~ )  times the 
flux based on unit void area, so also is the concentration 
(and hence the concentration gradient) based on unit total 
volume (1 - ~ )  times the concentration based on unit void 
volume. Thus D, the ratio of flux to concentration 
gradient, is the same whether we define flux and 
concentration in terms of total area and volume or in 
terms of obstacle free area and volume, and is unaffected 
by reduction in cross-sectional area 62. Def f is, of course, 
reduced by the cross-sectional area effect as we see from 
the relation De~=(1-~)D. 

Fick's second law for gel diffusion 
By the usual method of calculating the amounts 

diffusing into and out of an infinitesimal (but large with 
respect to the gel grain size!) section, Fick's second law can 
be derived for gel diffusion: 

0Ca ~ 2 C a  
~t - o  yx2 

which is clearly also valid if Co is replaced by Cv or CE. It 
at once follows that in terms of D~ Fick's second law 
assumes the unusual form: 

~CE ~2CE 
K W = De~g~x~ 

This point was noticed by Satterfield et al. 54 (who 
unfortunately use the same symbol for D and for De~), 
Higuchi and Higuchi 63 (who refer to De~ as the effective 
permeability) and Lauffer TM, but missed by Wang 2~ who 
erroneously compared his measured D values (the 
solutions of Fick's second law in usual form) with 
theoretical D~ values. 

Range of polymer concentration 
The value of ~0 has varied in the different systems 

experimentally studied over the whole range from 0 to 1. It 
is thus important to consider the regions in the range of ~p 
in which theoretical viewpoints are to be expected to be 
valid. If the gel substance is coarsely dispersed, as in a 
porous solid, then the local environment of the solute and 
solvent molecules may be virtually independent of ~o. 
However, in the case of a polymer solution (the extreme 
case of fine dispersion) solvent molecules will be isolated 
from each other at sufficiently high values of tp, resulting 
in quite different mechanisms of diffusion from those at 
low ~o 49. As an example, the test for the existence of pores 
in membranes devised by Thau et al. 46 will be considered. 
This test requires measurement of two permeabilities: the 
solvent tracer permeability which depends on the sum of 
solvent-membrane and solvent-solvent friction, and the 
hydraulic permeability which depends only on solvent- 
membrane friction. The relative importance of the friction 
factors in solvent tracer diffusion can thus be inferred, and 
the existence of large pores is concluded if solvent-solvent 
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friction is much greater than solvent membrane friction. 
However, significant solvent-solvent friction is inevitable 
at intermediate or low ~o values (¢p ~< 0.75), so the test is 
only helpful if tp is very high 65. 

THEORETICAL APPROACHES 

(1) The obstruction effect 
Tortuosity. Frequently in the literature on porous 

media, or indeed for homogeneous membranes, the mean 
increase in path length due to obstructions is referred to as 
the 'tortuosity', here denoted 0. The concept of tortuosity 
also occurs in the study of flow through porous media, 
and a good review is provided by Carman 66. If the 
medium is modelled as a bundle of capillaries of uniform 
cross-section, tortuosly connecting the two surfaces 
across which a concentration gradient had been set up, it 

is easy to show that D/D o = 0 . The square relationship 

arises because the concentration gradient along the 
capillaries is reduced by the same factor as the path length 
is increased. On considering a more realistic model, not 
only is difficulty experienced in the definition of tortuosity 
and in its subsequent calculation, but also in taking 
proper account of the variable cross-section of the void 
spaces and hence of the concentration gradient along the 
diffusion paths. Nevertheless, the above relationship 
between D/D o and tortuosity, although not rigorously 
true, has been retained 62"67. Other workers 3a'68 have with 

1 
less justification preferred the relationship D/D o = ~. The 

complexity of the situation is illustrated by Boyack and 
Giddings 69 who, for the analogous case of electrical 
conductivity, include a 'constriction' factor as well as the 

(~)2 factor. A rigorous solution of the problem, for steady 

state diffusion, would require the solution of Laplace's 
equation in the void spaces of the media, with appropriate 
boundary conditions on the surfaces. To an approximate 
degree, this approach has been applied to a range of 
systems and will now be discussed. 

Laplace equation approach. Many expressions have 
been derived for steady state diffusion in a medium 
composed of immobile, impenetrable objects of volume 
fraction q~ embedded in a uniformly permeable con- 
tinuous phase. Mathematically, the problem is to solve 
V2Cv=0 in the void space of a slab of the medium, with 
the boundary conditions that Cv takes the values C1, C 2 
at the faces and that only tangential diffusion can occur on 
the surfaces of the impenetrable objects. From a 
knowledge of Cv, J can be found by averaging -DoVCv, 

ACE 
and hence De, from J = - Doe~-~. In the first instance the 

majority of expressions were derived many years ago for 
the mathematically analogous properties of electrical 
permittivity and conductivity (for example for the 
conductivity problem we need only replace Cv by 
potential, J by current density and D o by conductivity) 
and many reviews are available 7°'71. Most of these 
formulae treat the more general case of two phase systems 
in which both phases are penetrable but with different 
permeabilities. 

It is interesting to note that the equation of Wang 27 
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Figure 2 A porous medium in which non-steady state diffusion 
may not be described by the steady state diffusion coefficient (see 
text) 

specifically for diffusion can be derived as a special case of 
Fricke's treatment v2 which was published thirty years 
earlier. Fricke's equation for a random suspension of 
impenetrable spheroids is 

1 D 1 De..~ -q~ or - -  
D O - 1 + qg/x D O - 1 + tp/x 

where x = 2 for spheres, x approaches 0 in the limit for 
oblate spheroids and x approaches 3 in the limit for 
prolate spheroids. The equation shows excellent 
agreement with conductivity data for dogs blood 72, with 
the volume concentration of red corpuscles (insulators) 
ranging from 10~o to 90~o. Hashin and Shtrikman 73 have 

1-q~ 
shown that 1 ~  (often known as Maxwell's expression 

for D J D  o for spheres) is in fact an upper bound for DefdD o 
for any ~0 and for impenetrable objects of any shape. 

All the formulae available refer to the steady state case, 
analysis of the non-steady state problem being extremely 
difficult. However, the value of D will be the same for non- 
steady state diffusion if the time for steady state 
attainment in a microscopic heterogeneous region is small 
compared to the time required for a unit change m 
concentration in that region 63. For a two phase system 
with one phase impenetrable, this may not be the case if 
there is a highly non-uniform distribution of pore sizes, 
with significant volumes of the penetrable phase 
accessible only through very narrow pores. Such an 
idealized structure is shown in Fioure 2. For steady state 
diffusion only pores of type ct are important for transport, 
pore 2 affecting D only through its influence on K. 
Provided it is small, the diameter of the fl pore does not 
greatly affect steady state diffusion. In contrast, for non 
steady-state diffusion the influence of the size of the fl 

OC 
pores on ~ -  would be very great. However, for random 

suspensions of the types discussed above the distribution 
of pore sizes should be fairly regular, so that the formulae 
can with reasonable confidence be used for non-steady 
state diffusion. 

A stochastic approach. When the 'impenetrable 
obstacles' are very small, with a size of a similar order of 
magnitude to the diffusing molecules, it seems 
unreasonable to use the above continuum picture. Mackie 
and Meares 67 used the lattice model for liquids, and 
pictured the polymer as blocking a fraction tp of sites. 
Diffusion of a solute (equal in size to the polymer 
segments) was considered to be restricted to the free sites. 
Making an approximate allowance for the existence of the 

polymer as chains with occasional crosslinks they derived 
an expression for the tortuosity: 

o = l + q  ~ 
1-~o 

whence D / D o _ ( 1 - q ~ ' ]  2 

There is room for a more spohisticated treatment of the 
relative rates of motion of the components and of the 
degree of association or crosslinking of the polymer 
within the framework of this approach, especially if 
numerical methods of solution are employed. A simple 
application for a monomer occupying fraction q~ of sites, 
whose motion is so rapid that distribution of sites may 

1 
always be treated as locally random, yields 0 = - -  

1- tp  
whence D/D o = ( 1 -  q~)2. For immobile obstacles 0 would 
be rather greater. The approach is, however, limited both 
by the treatment of polymer segments and solute 
molecules as equal in size, the rather artificial lattice 
model, and the use of the doubtful relationship 

The rather greater reduction in diffusion rate predicted 
by this approach compared to that of the Laplace 
equation is connected with the fine degree of dispersion of 
the obstacles. The volume of the obstacles is effectively 
increased by a shell of the thickness of the solute radius r. 
Thus ~0 in Fricke's equation should be replaced 1'64 by ~. 
It is not clear, however, which approach involves the more 
drastic idealizations. 

.4 stochastic approach for  large solute molecules. A 
significant number of the gaps between the obstacles may 
be insufficient to allow the passage of very large diffusing 
molecules. In these circumstances, replacement of ~0 in 
Fricke's formula with • is no longer valid, and indeed • is 
no longer easily calculated as the overlap of the excluded 
volumes of the individual obstacles needs to be 
considered. For randomly oriented straight fibres, 
Ogston 21 has derived the expression 

tI) = 1 - e x p [ -  7rL(r + p)2] 

where L is the length of fibre per unit volume and p is the 
fibre radius. This formula may be compared to the 
nonoverlap situation: 

~ = n ( r + p ) 2 L  

The root-mean-square radius of spherical spaces in a 
random network of straight fibres has been shown to be 

1 

( n L ) - ~ - p .  For p =0.5 nm, this gives 4.5 nm for 9 =0.01 
and 1.1 nm for ~o = 0.1. For solute molecules of this order 
of size the chief cause for reduction of the diffusion rate 
will be the limited number of spaces available in the 
network, if the network is unperturbed by the diffusing 
molecules. From this point of view Ogston et al. 62 have 
derived the expression 

1 1 
D/D o = exp[ - (rc/)~-(r + p)] = exp[ - q~(r + p)/p] 

1018 POLYMER, 1982, Vol 23, July (Suppl.) 



Like the Fricke equation with ~0 replaced by ~, this 
expression has a parameter (p or L) related to the fineness 
of dispersion of the gel substance; p may be determined 
from comparison of measured partition coefficients with 
the Ogston expression for ~. The values ofp so obtained 55 
appear reasonable, the discrepancy ofp  with the radius of 
a single polymer chain TM being satisfactorily explained as 
due to chain association. 

Since the network is not considered to be perturbed by 
the diffusing molecules, the theory applies equally to gels 
or polymer solutions. 

(2) The effect o f  increased hydrodynamic dra9 
The idea that the proximity of the stationary gel 

substance results in an enhanced frictional drag on the 
diffusing molecules was first introduced by Friedman and 
Kraemer 7, who treated gels as having cylindrical pores. 
The decreased rate of diffusion is obtained from Faxen's 
solution to the problem of the fall of bodies in pipes, which 
gives v5 

DID o = 1 - 2.1 r/R 

to first order in r/R, where R is the pipe radius. In a fairly 
well characterized porous medium (R = 1.6 nm) the more 
exact solution of Haberman and Sayre was found to give 
the wrong functional dependence of D/D o on r/R, although 
the predicted and observed effects were of similar 
magnitude 54. Possible reasons for the failure of the 
equations are the idealized nature of the pore geometry 
used in the model, and/or a breakdown of the continuum 
assumption in the pores. As gels are far less well 
characterized and probably more random in structure, 
the treatment of Friedman and Kraemer is best regarded 
as a mathematical convenience rather than a physical 
picture. 

Broersma ~6 has developed expressions for the frictional 
drag on spherical particles moving in a medium in which 
the viscosity varies with distance from the particles. For 
the case of a solvent molecule in a slurry or solution, the 
viscosity is considered to increase from the solvent 
viscosity r/0 at the molecule, to the bulk viscosity r/at ~ .  
This leads to an approximate expression Do~D= 1 +0.3 
(q/,0- 1). While not directly applicable to gels, the theory is 
interesting and suggestive. 

Thus there is no realistic quantitative theory available. 
Furthermore, tthe hydrodynamic drag effect is not the 
only way in which a dependence of D on r can arise, as has 
sometimes been supposed TM, since the path length may 
also vary with solute size. Some independent insight into 
the significance of the drag effect can, however, be 
obtained from rotational diffusion measurements, which 
will be discussed in the next section. 

(3) Alteration of  solvent properties 

Friedman and Kraemer 7 again introduced the idea that 
the viscosity of the solvent present in a gel may differ from 
the viscosity of the bulk solvent. While this would affect D, 
it is difficult to get an independent method to assess its 
significance. Friedman and Kraemer considered the 
change in solvent viscosity to be independent of ~o, so that 
it could be found from lim D/D o. This appears excessively 

4a~O 

simple, and furthermore the results of Friedman and 
Kraemer are the only ones which have the doubtful 
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distinction of not extrapolating to D = D O at ~0 = 0. Clough 
et al.  77 claimed that the alteration of solvent viscosity is 
the principal factor in reducing the rate of solute diffusion. 
They took the limiting viscosity at high shear rate of a 
polymer solution (or slurry) to be the solvent viscosity in 
the solution; using this method the viscosity of water in a 
1~o CMC solution was found to be enhanced by a factor of 
3.4. Osmers and Metzner 24 also argued that the principal 
influence of the polymer on diffusion in dilute polymer 
solutions is caused by the alteration of solvent 
p rope r t i e s~n  particular, the solvent intermolecular 
spacing which they expressed as a function of the excess 
volume of mixing of the polymer and solvent. The 
viscosity of solvent in the solution was then equated with 
that of the pure solvent at a temperature such that the 
intermolecular spacing was the same as that given by their 
expression. The viscosity of water in a 1~o CMC solution 
was in this way found to be enhanced by a factor of only 
1.08. This more modest alteration of solvent viscosity, 

1 
predicting D/D o = L08 in the absence of other factors, is in 

much better agreement with the majority of experimental 
results for diffusion, although very low rates of diffusion of 
oxygen in CMC solutions have been reported. TM 

Rotational diffusion, being free of the requirement of 
hole formation or circumvention of obstacles, is 
considered to be a closer reflection of 'microscopic 
viscosity' than translational diffusion. However, 
rotational diffusion studies still cannot distinguish 
between direct or hydrodynamically coupled friction with 
the polymer and increased 'structural viscosity' of the 
solvent. Fluorescence depolarization studies of the 
rotational diffusion of fluorescein have shown that the 
microscopic viscosities of aqueous hydroxyethyl cellulose 
and polyacrylamide solutions 79 and hydroxyethyl 
cellulose gels 8°, while considerably greater than that of 
water, are consistent with a much smaller effect than that 
claimed by Clough et al. 77 for CMC solutions. Even 
smaller effects have been observed in studies of the 
rotational diffusion of serum albumin in dextran 81 and 
hyaluronic acid 82 solutions. It is interesting to note that 
rotational diffusion is insensitive to the degree of 
polymerization 79'sl and is not greatly changed during the 
gelation of agar, gelatin and silica gels 83. 

The existence of more than one state (bulk or bound) for 
solvent molecules has made interpretation of n.m.r. 
relaxation times too difficult to be sensitive to the finer 
details of solvent properties in gels, although it has been 
indicated that the bulk water in aqueous gels is not very 
different from pure water 84 in spite of earlier conjectures 
to the contrary. 

It thus seems reasonable to assume that solvent 
properties are not significantly altered by the presence of 
the polymer unless diffusion results cannot otherwise be 
explained. In this spirit, the enhanced diffusion rates 
found in some polymer solutions were explained by 
alteration of solvent structure 85. However, doubt has 
been cast on most of the experimental results indicating 
enhanced diffusion rates in polymer solutions s6'87. 
Nevertheless, the water intra-diffusion coefficient has 
been found to be enhanced in certain electrolyte solutions 
(by as much as 28~ for 4 molar KI solution at 10°C), so 
that at least for these systems the structure breaking effect 
of the ions appears to have a significant effect on 
diffusion ss. 
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(4) Polymer involvement 
In order to make a diffusive jump, a molecule must 

attain sufficient energy to overcome attractive forces 
holding it to its neighbours and also an empty site must be 
available into which it can jump. The former is considered 
to be the rate controlling process in the Eyring rate theory 
of diffusion 89, while the free volume theory treats the 
latter as rate determining 9°. The relative importance of 
the two processes in viscous flow has been assessed for a 
variety of liquids 91. While many solvents are borderline, 
broadly speaking flow in polymers and van der Waals 
liquids is free volume limited, while hydrogen bonded 
liquids are energy limited (except at low temperature 
where flow becomes free volume limited) 91. These 
conclusions should also apply to diffusion. Both theories 
yield expressions of approximate Arrhenius form for the 
temperature dependence for diffusion at constant 
pressure. 

For porous gels, diffusion of small molecules will take 
place in the solvent phase, so that (if the solvent is not 
altered by the gel substance) it is anticipated that the 
Arrhenius or apparent activation energy E (defined by 

- R ~31nD 
E= O1/T' where R is the gas constant) will be 

unaffected by the presence of the gel substance. For 
homogeneous gels the medium in which diffusion takes 
place becomes progressively more unlike the solvent as ~0 
increases, so that a corresponding progressive change in E 
is to be anticipated, whether the diffusion is free volume 
controlled or activated. For example, as ~o increases, 
diffusion will require increasingly frequent shearing of 
polymer-solute and polymer-solvent bonds. In addition, 
the solute molecules will sometimes be trapped in 'cages' 
of polymer molecules, so that D will become increasingly 
dependent on the mobility of the polymer segments, 
resulting in a greater apparent activation energy 92. 

Recently a picture of molecular sieving processes has 
begun to evolve in which the retardation of large 
molecules is governed by the kinetics of distortion of the 
network, rather than by its geometry. This is in contrast to 
the theory of Ogston et al. 62, which was developed for 
sedimentation as well as diffusion. So far the new picture 
has only been applied to sedimentation 93 and gel 
electrophoresis94; for free diffusion the forces acting on 
the migrating molecules are perhaps insufficient to distort 
the network. Unfortunately the only study of the 
temperature dependence of a molecular sieving property 
seems to be that reported by Ogston et al. 62, showing no 
change in temperature dependence of sedimentation rate 
on adding a polymer to the solution, thus supporting their 
model. 

The Eyring rate theory approach. According to this 
theory, an absolute calculation of the rate of diffusion of a 
trace species in a liquid can be made from the equation 

D=22_k 

where 2 is the jump distance and _k is the jump rate. If the 
transition (i.e. activated) state differs from the normal 
state only in having one less degree of freedom of 
translational motion, then the rate theory givesS9: 

! 1 

k_ = k T(2rtmk T)- ~ Vy - ~exp( - e/k T) 

where m is the mass of the diffusing solute (more correctly, 
the reduced mass of the solute-solvent pair), V s is the 
average free volume available for each diffusing molecule 
and e is the difference in energy per molecule of activated 
and normal states at OK. 

Li and Gainer 95 and Navari et al. 8~ considered how the 
addition of polymer to the solvent would alter the terms in 
the Eyring equation. It may be seen that 

D/Do = (2,/2)2(VI / V})l/3 exp(e - e'/k T) 

where the prime indicates properties of the polymer- 
solvent mix. To evaluate these properties it was boldly 
assumed that formulae given by Glasstone et al. 89 could 
be applied to dilute polymer solutions. To this end a 
molecular weight M' (the mass fraction average of solvent 
and polymer molecular weights) and a molar volume V' 
(the volume of M' grams of solution) were assigned to the 
polymer solution; 2' was then replaced by (V'/N) 1/3, where 
N is Avogadros number. It is manifest that for high 
polymers 2' thus calculated will greatly exceed 2, contrary 
to reasonable expectations. Problems such as this were 
obscured in the original papers by combination of the 2 
term with similarly suspect calculations of VHV }. Finally, 
agreement with experiment was obtained by proposing an 
empirical correlation for the exponential term, connecting 
it with solution viscosity functions. Thus while the theory 
appears to be moderately successful 96, it has the character 
of an empirical correlation rather than providing any 
theoretical insight. 

The rate theory approach remains, therefore, useful 
only in a qualitative way. Experimental determinations of 
E certainly do provide qualitative insight, and, according 
to the theory, E = N E - R T / 2  where e' may be identified 
with the sums of energy required to form a hole in the 
liquid and that needed by the molecule to jump therein. 

The free volume approach. Crudely defined, the free 
volume of a liquid is the difference between its actual 
volume and the minimum volume which it would occupy 
if the molecules were packed firmly in contact with each 
other. Cohen and Turnbull 9° considered diffusion of a 
trace impurity in a liquid to occur by movement of 
molecules into voids formed by redistribution of the free 
volume within the liquid. The voids may be pictured as 
formed by a general recession of the many surrounding 
molecules, and filled in by the reverse process 97. No 
energy change is associated with the free volume 
redistribution, but the rate of diffusion is governed by the 
probability of formation of sufficiently large voids for the 
molecules to enter. This is shown to be proportional to 
exp(- ~ V*/VI) where ~ is a numerical factor whose value is 

1 * 90 between ~ and 1, and V is the critical void volume ; 
whence Do~exp(-TV*/Vy).  Since usually VyozT at 
constant pressure, this has the Arrhenius form. However, 
the theory predicts an entirely different temperature 
dependence to that of the Eyring equation if D is measured 
at constant volume rather than constant pressure. 

In a binary solution, it is generally assumed that the free 
volume is equally available to the components. Vy (the 
average free volume per molecule) is thus redefined as the 
specific free volume of the mixture F'y divided by the 
number of jumping units per gram, be they molecules or 
short sections of polymer chains. Vy will thus change with 
composition for two reasons: firstly, f~y will depend on 
composition according to 

1018 POLYMER, 1982, Vol 23, July (Suppl.) 



f/f = W~ V~(1) + W2 f/I(2) + A f/M 

where W~, W 2 are weight fractions, ~'y(1),~i(2 ) are specific 
free volumes of the components and AV~ is the specific 
volume change of mixing; secondly, the number of 
jumping units per gram of mixture JK'will depend on 
composition according to 

~4/~= W,f(1)  + W2J, (2) = W1N/M 1 + WzNn/M z 

where Mt, M 2 are the molecular weights of the 
components, and component 2 is a polymer with n 
jumping units per molecule. Since V* is approximately the 
volume of the diffusing molecule, it should be independent 
of composition, whence 

D/D o = exp [ - 7 V * (~g? Vf -MP(1)/Vf( 1))] 

More usually the free volume theory has been used in the 
study of deviations of D from the diffusion coefficient of 
the solute in the pure polymer D e when a low 
concentration of a plasticizing solvent is present, so that 
the more usual equation would be 

D/De = exp[ - 7 V*(J~/~" s -J(2)/~'y(2))] 

The equation in this form was developed by Vrentas and 
Duda 97. However, they also showed that if certain 
conditions hold, the earlier form due to Fujita 98 may be 
obtained. These conditions are that K'(1)=K'(2) (i.e. the 
molecular weight of the polymer jumping unit is equal to 
that of the solvent), and that V/V(2)--- 1 (i.e. the specific 
volumes of the polymer and of the mixture are very close), 
from which it follows that 

O'O.:ex'I 
where B = 7 V*JY~/p is independent of composition and f, 

~'s ~" (2) f(2) are the fractional free volumes ~-, ~ of the mixture, 

polymer respectively. If, furthermore, there is no volume 
change on mixing, we can write f = f ( 2 ) +  fl(1 -tO), where 
f l=f (1) - f (2) ,  whence 

1/ln(O/Dp) = If(2) +f2(2)/fl(1 - tO)]/B 

The theory in the form due to Fujita thus predicts a linear 
plot of 1/ln(Op/D) against 1/(1 - tO). B is usually assigned 
the value of one when no independent insight is 
available99 - lol; two of the variables De, f(2) and fl are 
used to fit the data, although D e is amenable to direct 
experiment and independent estimates of f(2) and fl are 
possible from, for example, viscosity and glass transition 
measurements98.1oL ao2. 

The Fujita version of the free volume theory has been 
successful for many polymer-organic diluent systems for 
tO in the range from 1.0 to 0.8. For solvents of small 
molecular size, however, such as water, the concentration 
dependence of D is far weaker than might be expected 
from the theory. This may be due to the assumption of 
equality of the molecular weight of diffusing solute and 
polymer jump unit built into the theory 97, although a 
recent experimental study has supported the idea that the 
size of the polymer jump unit is related to the size of the 
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other species, and therefore that V s is of less significance 
than f, the fractional free volume 1°1. The approximation 
V/V(2) ~_ 1 is certainly reasonable in some region of tO near 
to unity, but unless V(1)= V(2) it cannot be valid over a 
large range of ¢. Together with the restriction to systems 
with no volume change on mixing (i.e. with f a linear 
function of composition) this will restrict the validity of 
the expression to large tO,oz. A more serious restriction, 
however, concerns the applicability of the free volume 
theory itself. The fractional free volume of the solvent is 
generally much greater than that of the polymeP °2 and, 
as mentioned above, diffusion in the pure polymer is free 
volume limited so that, at large tO, increases in solvent 
concentration will be effective in increasing the rate of 
diffusion. However, in most solvents, attractive forces are 
significant as well as free volume. Thus, before applying 
the free volume theory over the full range of tO, it is 
important to check that free volume is indeed the rate 
limiting factor for diffusion in the solvent 1°3. For organic 
solvents at moderate temperatures, free volume effects are 
expected to be important if not dominant, but for water 
attractive forces probably predominateg~; nevertheless, 
the free volume theory has been applied to aqueous gels of 
fairly high water content (up to tO=0.1) 1°4. Some 
authorities have taken the point of view that the diffusion 
of small molecules in a polymer-solvent system depends 
on the ease of a cooperative movement of several polymer 
segments, which is in turn determined by the available free 
volume 1°5, rather than the direct relationship between 
diffusion and free volume utilized above. According to this 
picture, a rather abrupt change in the curve of D/D o 
against tO may be anticipated in the region of small tO, 
corresponding to the transition from solvent with isolated 
non-overlapping polymer molecules to a uniform 
pervasion of the whole volume by the polymer 
segments1°°. 

According to the free volume theory D~:exp-B/S 
from which it follows that 
E = R T2~ln D/OT = (BR T2Of/3 T)/f2; f2  can be round as 
detailed above. While it might be expected that all of the 
increase in volume due to thermal expansion is an 
increase in free volume, in practice it has been found 
necessary to make a distinction between free volume 
available for diffusion and 'interstitial free volume' so that 
Of/OT for pure substances cannot be deduced simply from 
the coefficient of thermal expansion but must be deduced 
from the dependence of viscosity on temperature 9v. For 
the binary mixture a reasonable estimate of Of/O T as being 
the volume-fraction average of Of(1 )/0 T and c~f(2)/0 T can 
be made 99. 

RESULTS REVIEW AND DISCUSSION 

(1) Dependence of D/D o on tO and solute size and nature 
Some representative data from the literature are given 

in Figures 3-5 and Table 1. The continuous lines in the 
figures were constructed by visual averaging and 
interpolation, but are not extrapolated. Where the results 
were given in the original papers as functions of polymer 
weight fraction they have been converted to functions of tO 
using the approximate specific volumes of 0.9, 0.8, 0.8 and 
0.6 c m  3 g-  1 for polyacrylamide12, polyvinyl- 
pyrrollidone 1°6, gelatin, and pol3~saccharide 62 
respectively. 
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Plot Diffusing 
no. species Solvent Polymer Reference 

1 Theoretical 
plot: D/D 0 = 1 -- ~12 

2 Glycolamide Water Various 
(solutions) 

3 Theoretical 
plot: D/D o = [(1 -~ ) / (1  + ~)] 2 

4 CI-- Water Agar (gel) 

5 HTO Water 

6 Urea Water 

7 G lucose Water 

8 Bovine serum Water 
albumin 

9 Turnip mosaic Water 
virus 

B iancheria and 
Kegeles lo7 

Langdon and 
Thomas 32 

Agar (gel) Nakayama and 
Jackson 108 

Agar (gel) Friedman I09 

Hydroxyethyl- Brown et al. 8° 
cellulose (gel) 

Hyaluronic acid Laurent et aL 110 
(solution) 

Hyaluronic acid Laurent et al.11° 
lsolution) 

Validity and reproducibility of results. Before 
attempting to interpret the results, it is desirable to 
consider their validity. As noted above, White and 
Dorion 57, Friedman and Kraemer 7, Friedman 1°9 and 
Klemm and Friedman 114 all tacitly assumed K = 1 so that 
D will be progressively underestimated as • increases. 
Unfortunately, in the absence of raw data the correct D 
cannot be determined. The results of Brown, Chitumbo et 
al. 56,a° '11s w e r e  obtained by a similar experimental 
method, but K was determined, and the data analysis 
appears satisfactory (except for the tightly crosslinked 

cellulose gel which was non-uniform and a somewhat 
artificial correction was applied to the diffusion 
coefficients56), although their results are exceptionally 
low (see Table 1). The method of Nishijima and Oster 113 
may suffer from coupled sucrose and PVP diffusion, since 
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Figure 4 Dependence of relative diffusion rate D/D o on polymer 
volume fraction 

Plot Diffusing 
no. species Solvent Polymer Reference 

1 Theoretical 
plot: 

2 KBr 

3 H20 ls 

4 Spin-labelled 
H20 

5 Spin-labelled 
H20 

6 U rea 

7 Theoretical 
plot: 

8 Glycerol 

9 Sucrose 

10 Sucrose 

11" Methanol 

D/D o = 1/(1 +4/2) 

Water Gelatin (gel) Stonham and 
Kragh 111 

Water Ovalbumin Wang 27 
(solution) 

Water Agarose (gel) Derbyshire and 
Duff 84 

Water Starch (gel) Basler and 
Lechert ! 12 

Water Polyacrylamide White and 
(gel) Dorion s7 

D/D o = [(1 - 4)/(1 + 4)] 2 

Water Polyacrylamide Brown and 
(gel) Johnson 34 

Water PVP, medium Nishijima and 
molecular Oster 1 ] 3 
weight (solution) 

Water Polyacrylamide White and 
(gel) Dorion s7 

Benzyl- Cellulose ace- Klemm and 
alcohol tate (gel) Friedman 114 

* Plotted as polymer weight fraction 
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Plot Diffusing 
no. species Solvent Polymer Reference 

1 Theoretical 
plot: D/Do= 1/(1 +~/2) 

2 C 14 labelled Benzene Rubber 
benzene 

3 HTO Water 

4 HTO Water 

5 Spin labelled Benzene 
benzene 

6 Theoretical 
plot: 

7 C 14 labelled 
fructose 

Patt le et  al. 42 

Various bulky Pikal and Boyd 115 
organic electro- 
lytes (solution) 

Various (poly- Yasuada et aL 1°4 
mer membranes) 

Polyisobutylene Boss et al. 100 

D/Do= [(1 -~ ) / (1  +~) ]2  

Diethy- Poly hydroxy- 
lene methyl met ha- 
glycol crylate (gel) 

Wong et aL 116 

the sucrose concentration gradient was rather large: such 
a problem was observed in the system glycolamide-PVP- 
waterl°7. 

It should be noted that the values for the self diffusion of 
water (Do*) in the literature are fairly scattered122~for 
example, for experiments using HTO as the tracer the 
values of different workers have ranged from 2.2 to 
2.6 x 10 -5 cm 2 s-~--a  much greater range than the 
scatter of results found by each individual worker. For 
this reason Do* in Table 1 has been taken as the value 
determined in each reference, or otherwise as 2.3 x 10-5 
c m  2 s -  1. Similar comments apply to the results displayed 
in Figures 3 5. Clearly, uncertainty about the value of D O 
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makes it hard to check the data for linearity or 
extrapolation to D O as ~0--*0. 

Some workers have found large differences in D as 
determined in different preparations of the gel; in 
particular, Friedman et al. reported discrepancies in D of 
up to 100~o for gelatin, agar and cellulose acetate 
gels ~, 109, a 14 which they attributed to varying structure of 
the different preparations. However, Stonham and 
Kragh 111 have reported no significant effect of the 
viscosity grade on the rate of diffusion of KBr in different 
gelatin gels. Other workers have reported little effect 
arising from the degree of crosslinking of gels on the rate 
of diffusion of small solutes such as used by Friedman et 
al. 57"118. It is also relevant to note that sucrose and 
dextran have an equal effect on the conductivity of NaCI 
solutions123; nor does gelation alter the conductivity of 
gelatin solutions, although a fall in the conductivity of 
starch slurries has been observed on gelation 124. 

It thus appears that the reproducibility problem of 
Friedman et al. is caused by something other than 
variability in gel structure. For large diffusing molecules, 
however, the effect of crosslinking is significant 11s, and 
methylene blue diffusion is affected by the grade of 
gelatin 58. 

Obstruction. It is clear that in every case D/D o falls 
below that predicted by the simple obstruction effect for 
spheres, D/D o = 1/(1 + ~0/2). Within the framework of this 

Table 1 DiD 0 for labelled water in aqueous gels 

Gel ~ DID o References 

Calcium alginate (solvent approx. 
was 60% sucrose 0.01 0.9 Muhr 117 
solution) 

Hydroxyethyl- Brown & 
cellulose 0.03 0.24 Chitumbo t l8  

Tobacco mosaic virus Douglas, Frisch 
(solution) 0.05 0.96 and Anderson 119 

Sodium carboxymethyl Higdon and 
cellulose 0.05 0.82 Robinson t20 

Woessner,S nowden 
Agar 0.05 0.87 & Chiu 121 

Brown & 
Polyacrylamide 0.06 0.13 Chitumbo 118 

Woessner, Snowden 
Gelatin (solution) 0.08 0.80 & Chiu 121 

Spursely crosslinked Brown & 
cellulose 0.11 0.18 Chitumbo 118 

Densely crosslinked Brown & 
cellulose 0.11 0.17 Chitumbo 1Is 

H orowitz and 
Dextran 0.12 0.67 Fenichel 2 

Weakly crosslin ked 0.16 
polystyrene sulphonate (weight 0.49 Pikal and Boyd 115 
ion exchanger fraction) 

Thau et al. 46 (recal- 
Cellophane film 0.56 0.10 culated by Meares 65) 

(For larger values, of ~b further results are given by Meares 6s ) 
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theory three possibilities exist for explaining the 
discrepancy: the obstacles have a more obstructive shape 
than spheres, the size of the obstacles is enlarged by an 
impenetrable solvation sheath, and the size of the 
obstacles is enlarged by an excluded volume effect. 

Treatment of the obstacles as needles (the most 
reasonable spheroid approximation for polymer chains or 
fibres) still predicts an inadequate reduction in D/Do, so 
that they must be treated as oblate spheroids to bring 
theory and experiment into line according to the first 
possibility. Woessner and Snowden 125 considered the 
existence of widely spaced barriers in agar gels as a 
possible explanation of the smaller reduction of D*/D o 
found by n.m.r, than by the conventional experiment of 
Nakayama and Jackson l°s. However, the latter results 
are also in conflict with conventional experiments for ion 
diffusion in agar gels L3,4,a2. In the absence of any other 
evidence for the existence of two dimensional 
impenetrable structures in gels, this possibility is 
unattractive. 

The second possibility has received much attention, 
and is the basis for Wang's method of finding the 
hydration of proteins 2v. To calculate the degree of 
hydration, the volume fraction of polymer obtained by 
fitting the diffusion data to Fricke's formula (for example) 
compared to the known volume fraction of unsolvated 
polymer. In this manner, Langdon and Thomas a2 (curve 
4, Figure 3) have arrived at the rather high hydration 
figures of 3.4g H20/g anhydrous agar. Wang 2v 
introduced a further modification and postulated that 
bound water would further reduce water intra diffusion by 

the factor "(1- Cbouod);" the results of Derbyshire and 
Ctota| / \ 

Duff s4 and Woessner and Snowden 125 are thus 
compatible with a much smaller degree of hydration of 
agar (,-,0.Tg H20/g agar). Such values appear reasonable 
in the light of other techniques for determining bound 
water. The conductivity data of NaC! in aqueous PEG 
and PVP solutions 1°6 and sucrose and dextran 
solutions x2a may also be interpreted in this way. 
However, this interpretation would predict unreasonably 
high degrees of solvation for some of the data--such as all 
those significantly below curve 3 of Figure 3 or curve 7 of 
Figure 4. 

For v~ry large diffusing molecules, the low values of 
D/D o may be accounted for in terms of a large excluded 
volume effect--e.g, curves 8, 9 of Figure 3. For sufficiently 
low values of ~p, we may replace ~o in Fricke's formula for 

by ~ = t p ~ .  For larger values of tp this needles 

formulation breaks down (due to overlap of excluded 
volumes) and the only approach available is the Ogston 
equation for D/D o. Taking the values for the radii r or BSA 
and TMV as 3.55 nm and 14 nm respectively, and p =0.5 
nm for hyaluronic acid fibres 62, both equations agree 
sufficiently with the results shown in curves 8, 9 of Figure 3 
to give credence to the basic idea. However, quantitative 
agreement is lacking. In this context the inaccuracy of the 
Ogston equation is disappointing, although it does fit well 
with the data of Preston and Snowden 62. Schantz and 
Lauffer ~ found that Fricke's formula with tp replaced by 
empirical values of • successfully predicted DID o for a 
variety of solutes, including some proteins (e.g. BSA, 
0=0.25) in 1.5~o agar gels. Other workers 9 have also 
found moderate reduction in the diffusion rate for 

proteins in agar gels; however, the addition of CMC to an 
agar gel caused a further drastic decrease in D, probably 
because of the more homogeneous nature of this system s 
and hence a larger excluded volume effect. 

The excluded volume effect may also play a significant 
role in depressing D/D o for moderate size solutes, e.g. 
curves 6, 7 of Figure 3 and curves 8, 9, 10 and 11 of Figure 
4. For these data, r ~ p so that use of Fricke's formula for 
needles entails replacement of ~p by • ~4~0. This is still 
quite inadequate to explain the low values of DID o . As 
noted before, reasonable values for p are obtained when 
fitting the Ogston expression for @ to partition coefficient 
data, even for smaller solutes such as glucose and sucrose. 
Thus the partition coefficient data for 
sucrose/polyacrylamide of White and Dorion 57 are in 
tolerable agreement with the Ogston expression for 
with r--0.51 nm and p =0.9 nm. Use of these values in the 
Ogston expression for D/D o compares well with the data 
of White and Dorion for diffusion of sucrose in 
polyacrylamide gels (curve 10, Figure 4) at low q~(~0 < 0.05), 
but progressively overestimates D/D o for larger q~. Also, 
even at low q~, the expression overestimates D/D o for the 
diffusion of glucose in a hydroxyethyl cellulose gel (curve 
7, Figure 3). It is thus clear that the excluded volume effect 
cannot fully explain these low values found for D/D o . 

Friction and other interactions. Since the low values of 
D/D o found for many systems of moderately sized solutes 
cannot be explained by the obstruction theory, it seems 
necessary to postulate an enhanced friction drag on the 
diffusing molecules doe to the polymer. Support for the 
existence of significant frictional drag comes from 
rotational diffusion experiments. Thus for an aqueous 
hydroxyethyl cellulose gel (tp = 0.037), fluorescein 
depolarization measurements showed up almost a 
doubling of friction due to the presence of the polymer s°. 

From a knowledge of the fibre radius p the rms radius of 
spherical spaces in the network may be determined 62 as 

p(~o-~-- 1). A very crude estimate of the hydrodynamic 
drag factor may then be made by substitution of this value 
for R in Faxen's equation. For heterogeneous gels (e.g. 
agar, where p~25  rim) 55, the hydrodynamic drag thus 
calculated would be negligible for all but very large 
solutes. However, for gels in which the polymer chains are 
unassociated (e.g. polyacrylamide, ,-,0.9 nm) 62 the 
predicted additional reduction in DID o is surprisingly 
close to that found experimentally--e.g, the data of White 
and Dorion 57 (curve 10, Figure 4). Thus while 
quantitative agreement cannot be hoped for, the 
hydrodynamic drag effect is probably significant for gels 
in which the polymer is finely dispersed or for very large 
solutes in coarse gels. 

Both the Ogston theory and the hydrodynamic drag 
effect (for rigid networks unperturbed by the solute) 
predict a rapid decline in D/D o with increase in solute size. 
In agreement with the Ogston theory, D/D o has been 
found to be an exponentially decreasing function of r for 
the diffusion of proteins in dilute hyaluronic acid 
solutions 62 and for the diffusion of a variety of solutes 
(ranging from urea to proteins) diffusing in gel 
membranes 126. However, for polyacrylamide, 
hydroxyethylcellulose and cellulose gels, D/D o has been 
found to be virtually independent of solute size for 
alcohols and oligosaccharides, except for large 
polyethylene oxide polymers (PEG 3000 and PEG 
4000)11a. More recently similar results have been found 
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for polyacrylamide gels 34. Together with the failure of the 
obstruction theories to account for these results, the 
independence of DID o on solute size seems to point to an 
increased 'local viscosity' of the medium 118 (as pointed 
out recently the notion of 'micro viscosity' of polymer- 
solvent systems has no definite meaning if solute diffusion 
depends on solute size or character127). It remains 
unresolved as to whether this could be due to some sort of 
solute size independent frictional interaction with the 
polymer, or solvent structuring. It is unfortunate that the 
effect of solute chemical type has not been studied 
systematically--although for the polyacrytamide gel 
DID o has been found to be significantly different for HTO, 
salts and oligosaccharides t~8. It is interesting also that 
DID o for glucose diffusion in the hydroxyethylcellulose gel 
is the same for three different solvents--water, DMSO 
and DMF. Such results, it seems, point towards the 
importance of solute-polymer interactions and the 
dependence of DID o on the particular solute-polymer 
pair, although it is difficult to see how these interactions 
would be so important at the low polymer concentrations 
(~0 < 0.05). As a final work of caution, it should be noted 
that the results of Brown, Chitumbo et aL so'118 on which 
much of the above discussion is based, are, for all systems 
studied, of similar low magnitude. The argument of the 
significance of solute-polymer interaction is thus 
considerably weakened when it is observed that HTO 
diffusion is much more rapid in a covalently crosslinked 
dextran gel 2 than in the chemically similar cellulose gels of 
Brown et al. 118, while Brown et al. find similar rates of 
diffusion for HTO in the chemically dissimilar gels of 
cellulose and polyacrylamide (see Table 1). 

Finally it must be said that factors other than solute size 
and solvent viscosity play an important role in 
determining the rate of diffusion in monomeric liquids. 
Thus, in hydrogen bonding solvents, diffusion of strong 
hydrogen bonding solutes is selectively reduced 2. Again, 
in the system sucrose-water, it has been found that DID o 
for HaD 18 agrees well with qo/q while D/D o for labelled 
sucrose falls more slowly than q/qo as the sucrose 
concentration is increased 4t. 

Free volume. The free volume theory, in the form 
due to Fujita, predicts the relationship 
O=Dpexp[1 / (p+q/ (1 - tp ) ) ]  (or applying the same 
derivation from Do, O = D o exp[1/(P' + q'/(1 - q~))]) where 
p and q are independent of ~0. Such equations have been 
found to satisfactorily express the variation of D with 
composition for many systems, for example curves 2, 5 

and 7 of Figure 5. However, since even 1/ln 1 ~  gives 

a reasonably linear plot against 1/~0, the theoretical 
implications of a fit with a Fujita type polt are not great. It 
is unfortunate that f(1), f(2) and even De 92'100'10x have 
often been regarded as adjustable parameters; few critical 
studies in which Dp is directly measured and f(1), f(2) 
determined independently (e.g. from viscosity or glass 
transition temperature data) have been undertaken, 
although the values which fit the diffusion data are 
plausible for organic liquid-polymer systems 99- lOa,~o5. 

Critical polymer concentration. A number of workers 
have reported a fairly abrupt fall in the rate of diffusion of 
probe molecules in polymer solutions as the polymer 
concentration exceeds a critical value1 oo,1 o 1, ~ ~ 3, ~ 28. This 
has been interpreted as the concentration at which 
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overlap of the polymer molecules commences. While such 
overlap would certainly have a profound effect on 
polymer diffusion (since the coupling between segments of 
a polymer molecule will be affected by the presence of 
other polymer molecules) it is unclear why it should 
greatly affect diffusion of small molecules. Furthermore, 
the results which show this feature are rather exceptional 
(e.g. curve 9 of Figure 4) and the suspicion remains that the 
feature may be due to interference of the polymer with 
measurements of solute transport 129. 

(2) Dependence of  D/D o on T 
It is unfortunate that the dependence of D on 

temperature has not received the attention it deserves in 
many of the studies of diffusion in polymer solvent 
systems. However, while it is necessary to obtain accurate 
diffusivity data to demonstrate the small departure of 
DID o from unity for the more dilute gels, even more 
accurate data are required to reveal significant changes in 
the temperature dependence of D due to the presence of 
the polymer. For example, Derbyshire and Duff a4 give 
their results for D the uncertainty of 49/0, but their results 
for E the uncertainty of 13%. Only large differences in E 
from literature values for E o can be taken as significant. 

In many gels E has been found to be the same as E o 
within experimental error, pointing to the role of the gel 
substance as that of inert obstacles. These are: water intra- 
diffusion in starch gels 112 (0<tp<0.38), and agarose 
gels 84 (0<q~<0.13), diffusion of a variety of solutes in 
dextran gels 2 (9 = 0.17), diffusion of glycerol and PEG 600 
in a polyacrylamide gel a4 (q~=0.16) and diffusion of a 
number of chlorides in agar gels ~3° (q~ = 0.003). However, 
the activation energy for ionic mobility was found to be 
considerably greater in a starch gel (q~ =0.26) than in 
water 124. 

In some systems a progressive increase in E with ~p has 
been found; such results are displayed in Figure 6, 
together with some values of AE predicted by the 
correlation of Navari et al. a7 (curves 1, 2 of Figure 6). The 
very rapid increase of AE on addition of polymer to the 
solvent, predicted by the theory of Navari et al., is 
evidently in sharp contrast to all the experimental results, 
which display a gradual increase of AE with tp at low ¢. 
While no other quantitative prediction of AE for polymer 
solutions has been derived from the rate theory, the 
qualitative feature of a progressive increse in E with tp for 
homogeneous systems is in accord with the rate theory. 
However, there are several alternative qualitative reasons 
for a change in A E ~ r e a t e r  energy of solute-polymer 
bonds than solute-solvent bonds, greater energy to 
disrupt a 'cage' of polymer molecules due to chain 
stiffness 92 or the creation of a longer range order in the 
system due to the polymer x27. 

The free volume theory, however, does make the 
specific prediction of E = B(RTE/f2)Of/aT. Once again few 
workers have checked the validity of this expression, 
although for cetane intradiffusion in the system cetane- 
polyisobutylene it has been moderately successful 99. 

Brown and Chitumbol 18 have reported sharp 
discontinuities in the slope of In D vs. 1/T for glucose 
diffusion in polyacrylamide gels and cellulose gels. The 
apparent activation energies below 25°C are considerably 
less than that for free diffusion, while above 25°C they 
exceed the free diffusion activation energies by an 
equivalent amount. This exceptional result is interpreted 
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Plot Diffusing 
no. species Solvent Polymer Reference 

1 Theoretical Toluene Polystyrene Navari etal. 87 
plot for any 
solute 

2 Theoretical Water CMC Navari eta/. 87 
plot for any 
solute 

3 KCI Water Glycol metha- Spacek and 
crylate (gels) Kubin 1° 

4 Spin-labelled Benzene Polystyrene Kosfeld and 
benzene Gof Ioo 92 

5 C 14 labelled Cetane Polyisobuty- Moore and 
cetane lene Ferry 99 

6 Spin-labelled Cyclo- Polystyrene Kosfeld and 
cyclohexane hexane Gofloo 92 

as being caused by a sharp increase in mobility of the 
polymer chains at 25°C. This is analogous to the sharp 
increase in E found for diffusion of gases and solvents 
through polymers at their glass transition temperature: 
when the polymer chains become mobile more energy is 
required to form 'pores' in between the polymer chains for 
diffusing molecules, rather than diffusive jumps taking 
place only between existing 'pores'l 31. While there may be 
other evidence for a second order transition temperature 
of 25°C for cellulosic polymers 56's°, the argument is 
considerably weakened by the occurrence of the same 
behaviour of diffusion in the polyacrylamide gel at 25°C. 
Furthermore, no discontinuity of E was observed for 
glycerol diffusion in a different polyacrylamide gel 34. 
Another interesting result is the low value for E found a3 
for intradiffusion of chromate ions in an agar gel 
(q3 =0.006) containing 0.1M K 2 CrO+. 

CONCLUSIONS 

Diffusion of micromolecular solutes in the more 
heterogeneous gels (e.g. agar/water) is only slightly slower 
than in the solvent and the obstruction theory (e.g. 
Fricke's equation) is moderately successful in accounting 
for the effect. 

A greater reduction in the diffusion rate of 
micromolecular solutes seems to occur for the more 
homogeneous gels (e.g. polyacrylamide/water), although 
the results in the literature are rather variable. This 
reduction appears to be the result of a number of factors, 
including the obstruction effect, hydrodynamic drag and 
specific solute-polymer interactions. No quantitative 
assessment of these factors appears possible. 

For solvent intradiffusion in organic solvent polymer 
systems, the free volume theory is valuable in correlating 
the results. It is not yet clear, however, to what degree the 
theory is a successful explanation. A similar reduction of 
the diffusion rate is, for example, predicted by the 
simplistic stochastic obstruction effect of Mackie and 
Meares. 

Few careful experiments on the diffusion of 
macromolecules in gels have been reported in the 
literature. The drastic reduction in the rate of diffusion 
observed in homogeneous systems is probably due to the 
limited number of spaces available for the 
macromolecules in the gel, although distortion of the 
network may accompany diffusion, in which case a new 
theoretical approach is required. The more modest 
reduction of the diffusion rate of macromolecules in gels 
such as agar demonstrates the coarse structure of these 
gels. 

For a better understanding of diffusion in gels, the 
following emerge as useful experimental variables: solute 
size and chemical nature, temperature, gel structure 
(degree of crosslinking etc.) and solvent nature. 

POSTSCRIPT 

Subsequent to submission of the paper the authors were 
informed of another very relevant review, dealing 
particularly with diffusion of a third component in 
homogeneous aqueous polymer solutions 132. As well as 
presenting new material, some references to experimental 
work not given above are included. For low molecular 
weight solutes in dextran solution, an interesting 
correlation between DID o and K is revealed, but not 
explained. For compact macromolecular solutes of 
intermediate size, the theories of Ogston et al. 62 and of 
Langevin and Rondelez 93 have some applicability, while 
for very large compact macromolecules, D/D o = r/0/r/. The 
situation for the transport of long chain polymers in 
polymer solutions is very complex, and a novel rapid 
transport phenomenon is described. 
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